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We discuss the mean first-passage time of the activationless nonadiabatic electron transfer reaction by
using the stochastic Liouville equation for the study of outer sphere electron transfer in polar solvents
characterized by Debye dielectric relaxation. We obtain an approximate expression for the mean first-
passage time which incorporates the width of the transition with an arbitrary initial condition far from
equilibrium. We derive an analytical expression for the rate corresponding to harmonic potential sur-
faces in the overdamped regime. For Fokker-Planck operators of the Smoluchowski type, we introduce
a method to solve all of the generalized moments by using the eigenfunction expansion method.

PACS number(s): 05.40.+]j

I. INTRODUCTION

Since the pioneering work of Marcus and Hush [1],
electron transfer (ET) reactions have attracted a lot of at-
tention. Solvent dynamic effects on the rate of electron
transfer reaction have been the focus of experimental [2]
and theoretical investigations. When the microscopic
electronic processes are faster than the medium dielectric
relaxation, the observed ET rate is determined by the lon-
gitudinal dielectric relaxation time 7,. This solvent-
controlled ET has been demonstrated by Kosower, Hup-
pert, and co-workers. The theory of solvent-controlled
ET was first studied by Zusman [3] using the stochastic
Liouville equation method. Subsequently the solvent-
controlled ET has been developed by using the general-
ized Langevin equation [4], the mean first-passage time
approach [5], and the path integral method [6]. Most of
them are based on the assumption of a high barrier and
thermal equilibrium initial condition. The ET rate as-
sumes the Arrhenius form kgr= A4 exp(—E, /kT) where
E, is the activation energy. The preexponential frequen-
cy factor A is determined by the electronic coupling con-
stant, the reorganization energy, the driving force, and
7r. This implies the ET rate has a different time scale
from a medium dielectric relaxation and can be described
in terms of single-exponential decay. However, some
chemical processes have little or no intrinsic barrier, e.g.,
some isomerization reactions, ET, and the primary
charge separation step in photosynthesis [7]. The dynam-
ics of activationless transition reaction differ considerably
from those of high barrier. Without the high barrier, the
time scales of transition cannot be separated. The steady
state flux across the transition region cannot be obtained.
The general time-independent rate constant is not valid.
This implies that multiexponential decay relaxation pro-
cesses may occur. The lowest non-zero eigenvalue of the
kinetic equation may not be sufficient to describe the re-
action, because the eigenvalue spectrum may be dense.
Since the activationless transition is fast, the relaxation
processes may depend on the initial condition. To ex-
plore the activationless transition reaction, we need to
use the mean first-passage time method.
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II. THE METHOD

A. Zusman equation

We consider the transition between two shifted poten-
tial surfaces V|, and V,, which correspond to the donor
and acceptor state, respectively. The transition between
the diabatic potential surfaces is induced by the electron-
ic coupling constant ¥V, (see Fig. 1). In condensed
phases, these potential surfaces are coupled to a heat
bath. The time evolution of this system obeys the Zus-
man equation (for a detailed derivation see Ref. [8]) for
the coarse-grained density matrix p;; (i,j=1,2). The
Zusman equation is a semiclassical equation which de-
scribes the solvent dielectric fluctuation as a low frequen-
cy fluctuation with energy smaller than kz 7. The diago-
nal elements p,; and p,, are the probabilities of finding
the system in the initial and final potential well. The
diffusion motion is slow since it is activated by thermal
energy. The off-diagonal terms include not only the
diffusion motion but also the high frequency quantum
transition behavior. The Zusman equation can be re-
duced to two coupled equations by invoking the assump-
tion that the off-diagonal element p,, varies with reaction
coordinate much faster than the diagonal elements p;;

Frec energy \

Reaction coordinate X
FIG. 1. Schematic illustration of the reactant (well 1) and
product (well 2) potential energy surfaces for nonadiabatic elec-
tron transfer reaction in the text: (a) normal regime; (b) activa-
tionless regime; (c) invert regime.
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and p,,. The reduced Zusman equation is

;’tp [L—Klp, (1)
with
L, O
p=lp1pnl’, L= 0 Ly’

K (x)=2ReK ,(x)

1 -1
._1 1 ’
and
2

K (x)= f_wwdxlfowerlz(xl,ﬂx,O) ,

where G,(x,,7|x, 0) 1s the propagator [3/3t—L,,
+i(Vy— V) /%] L is the Fokker-Planck operator
with potential ¥, The G, propagator describes motion
in well L(V;+ V22) and quantum transition between V',
and V,,. K(x) depends on the reaction coordinate and
includes the information of the delocalized transition. By
using projection operator techniques on Eq. (1), we ob-
tained an expression for the recrossing long time transi-
tion rates,

k12
k2= 5 NA 5 , (2a)
1+kNA /kD1+kNA/kD2
k21
k2= NA , (2b)

1+k;*I2A/le+k%IlA/kD2

where k¥, describes the motion along the surface as
modulated by the surface splitting and a delocalized tran-
sition. The rate kj; characterizes the stochastic motion
on the ith well. It also accounts for the deviation from
equilibrium in the well that may occur if the crossing
motion, characterized by k {,, is sufficiently fast.

B. Mean first-passage time and averaged survival time

Define the populations as the integration of probability
density over space:

Q,(2)
Q,(1)

with the probability conservation Q,(¢)+Q,(¢)=1. Since
our system is a closed system, the equilibrium distribu-
tion (i.e., the background) has to be subtracted from the
population Q(t). Also, define the fluctuation of popula-
tions via

80=0(()—Q°, (4)

then lim,_, ,8Q(¢#)=0 and QF€ is unknown here. In the
following, ¢ and x are in units of 7, and V' Bm? [see Eq.
(17)]. Mean first-passage time and averaged survival time
are defined as

p11(x,1)

o= [" dx 3

p22(x, t)

=fo°°dt 8Q(1)= [Q(s)—%ge] (5)

s=0

and

N tSQ(t)———

Q(s)——Qe] , (6)
s=0
respectively. In the above equation, we define the La-
place transform as 8Q(s)= | ~ dt e ~*'8Q(¢).

Define the projection ogerator pP=g f dx and its
complement Q =1—P where g is a 2X2 diagonal
matrlx of equilibrium distribution at each well,
g =e “/f°° dxe i ",i=1,2. Applying P and Q to
the Laplace transform of Eq. (1), standard projection
operator manipulation leads to

. k 21 _ k 12
Ql_k12+k21 > Qz_k12+k2‘ : )
Mean first-passage time and averaged survival time are

0=05(kiin! —7), T=(k2+k¥)71, (8)

Qz 11mL>11+Qek11>2+Q2k1m+7'2—

’

ni
kO,Dl

9
k1 p; and k[ ! are given in Sec. II D.

C. Relaxation times

The first order kinetics that we used in Ref. [8] is based
on the assumption that the reaction starts in a near equi-
librium configuration and the equilibrium state is approx-
imately maintained during the reaction. In the activa-
tionless regime, the rate is fast and the initial
configuration is usually far from the equilibrium distribu-
tion. The reaction rate (3/9¢)Q,(¢)|,—, should vanish in-
itially, approach some maximum rate at later time, and
finally decay to zero. This needs a multiple exponential
decay time description. In this section we evaluate two
relaxation times from the known information of the mo-
ments: (1) probability conservation, ie., Q,(z)+Q,(t)
=1; (2) (3/3t)Q,(t)|,—=0 (in our harmonic oscillator
potentlal surface model, the initial conditions p,,=p,,; =0
imply this condition); (3) f 0 dtdQ(t)=145 (4)
[odtt8Q(n)=r,.

Assume a two-relaxation-time description of the popu-
lation in well 2,

Q,()=0%5+ae "+ be
With the conditions (1)-(4), we obtain

—A,t (10)

B 1/, RV
T T =1, T 1/A—1/A,
and
T T T2 172
=g oot | L3 T an
25 |95 (Q3)

D. Application to harmonic potential surfaces

In this section, we obtain an approximate rate constant
expression given in Sec. II C with a special model of har-
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monic potential surfaces. With a given initial distribution
(8 function and Gaussian distribution function), we evalu-
ate 7y and 7;. The harmonic potential surfaces are given
in Eq. (17). The stochastic processes correspond to over-
damped Brownian motion, i.e.,
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and

Ly,=Ly=3(Ly+Ly).

Here D is the diffusion coefficient and B=1/kpT.

L,= D_a__ _a_+ Bi Vil, i=1,2; .The exact _solution of the propagator of the off-
ox | dx dox diagonal term is [10]
J
1 1 1 1 Y71 1 ’
G, (x,t|x;,0)= exp { — 2D E(1—e Y—i|x —xe '—=xp(1—e ")
e\ 2aDr, Vi—e ¥ p[z D1y 1—e ¥ # |* 270
2
Y7L Y7L 1
—D p TLt+lT x—xi—Exot-{-ot ], (12)
r
where o is the crossing point and y =k x, is the force 1 1 1
difference at the crossing point. The use of Eq. (12) yields kp'=|B S o, 558 + > 1,—BAGT
the nonadiabatic transition rate

2

2 _, |4 1 2A .
= —_ .———-R —
kna=2 4|7, e exp o, | Bio, 1]
X(2V/BAGT —V/BE, )
XB *y(u,B) , (13a)
where
4TLV12
a:T ’ 7\=a)LTL N
N 2
= 2x +y)—i +y),
Biico, (x +y) lBﬁwL (x +y)
2
= 2x +y)P+i (y —x),
H | B, Y B,
x=BAGT , y=(V/BAGT —V/BE,)?,
_ © (__1)an+,11
v(u,B) n§0 nlu+n)
and
" Ao [
kA, =2]% | —Re +i
NA 4| 7, Biw, | Bho,
X(2V/BAGS +x/FE,)Zl
XB *y(u,B), (13b)
where
2
= 2 2__ J— R
n Bhio, (x +y) lﬁﬁwL(y X)

x=(V/BAG} +V/BE,?, y=BAGS .

The diffusion rate constants on each well are

X exp(BAGT )~% . (14a)

where B(x,y) is the beta function, ®(a,5,7,x,y) is the
degenerate hypergeometric series [12], and
exp(BAG] )B

kEZI ='TL %,S

l,s,s+i,—1,-/3AGf

X ®
D) 2

_1
|
(14b)

Introducing a series expansion of Eq. (14a), the
diffusion moments are

ko b1 =g; "(x*){—I(0)+S({BAGT )], (15a)
kihi=er'x") S —nl—'(—BAGT YI,(n),  (15b)
n=0""
where
n 1 0 _ xn
I(n)=—In2+ , S(x)= (—1)""U(n)=—,
m2=lm_% n§l n!
J,(n)=m! k§1%[<n+g>_k+(n+g)k_2]
x(_l)kk—m——l
EY (n+%)_k(n+7),,_2(_—l)k+i
, kit
Lom=1
X(k+i)™ ™",

(a),=alat+1) - (atm—1).

ko b, and ki p, can be obtained from Eq. (14b) by re-
placing BAGT by BAG] .
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When the initial distribution is a delta function,
8(y —yg), the diffusion moments are

k"“—l—‘[Ei(—x)—lnx] , x=4y?, (16a)
where Ei is the exponential integral function, and
. Ly
kit = 2 2 ' (16b)
n=1 n n

Equations (13)-(16) give all of the factors in Egs. (8) and
9.

III. NUMERICAL RESULT

In this section, we calculate the mean first-passage time
and averaged survival time by solving the four coupled
equations, i.e., the Zusman equation, given in Ref. [8].
We use the standard harmonic oscillator model as the po-
tential surfaces

Vii=imo’x?, (17a)

Vyp=1imo*(x —x¢+AE , (17b)
where AE is the driving force (AE <0 for exothermic
processes, and AE >0 for endothermic processes) and x
is the horizontal displacement. It is useful to transform
the Zusman equation to a set of first order differential
equations [8] by using the right eigenfunction of L ,.

The mean first-passage time and averaged survival time
can be obtained by

T =T (=D (18)
For detailed numerical method, see Ref. [11].

Since the difference between § initial distribution and
Gaussian initial distribution is small, we only show the
initial distribution. The probability distribution in well 2
is obtained by Q,(1)=[1—(2m)!"*a4 (#)]. The expansion
coefficient a, () can be obtained by solving the Zusman
equation with the Bulirsch-Stoer method [9] to integrate
out 4n (n =200) first order differential equations. We
compare the numerical calculation of Q(¢) and Q(1) from
the approximate analytic formula Eq. (3).

A full account of the comparison between analytical
result and exact numerical calculation is studied in Ref.
[11]. In Fig. 2, the behavior of a two-relaxation-time
description is very satisfactory for Q(¢) and Q(t) in an ex-
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FIG. 2. Comparison between numerical (®) and analytical
(0) calculation of population (a) and reaction rate (b) in well 2
with two relaxation times A7'=1.97 and A;!=7.38. Both of
these two plots correspond to activationless regime with
ho, =100 cm™!, A=20, T=300 K, x;=—2, a =10, S =6.256,
P=—6.256. Here we use the notation S =%x%/ﬁwb and

=—AE /fiw; .

othermic activationless regime. Other transition regimes
need more than two relaxation times.

In conclusion, we have developed a systematic way to
calculate the mean first-passage time and averaged sur-
vival time with consecutive approximation. A method is
developed to simulate a numerical result. This method is
much easier to solve than the differential equation by the
grid point method.
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